Current Issue : January - March Volume : 2012 Issue Number : 1 Articles : 6 Articles
not available...
Background\nAntibiotic-resistant Salmonella enterica serovar Paratyphi A, the agent of paratyphoid A fever, poses an emerging public health dilemma in endemic areas of Asia and among travelers, as there is no licensed vaccine. Integral to our efforts to develop a S. Paratyphi A vaccine, we addressed the role of flagella as a potential protective antigen by comparing cell-associated flagella with exported flagellin subunits expressed by attenuated strains.\nMethodology\nS. Paratyphi A strain ATCC 9150 was first deleted for the chromosomal guaBA locus, creating CVD 1901. Further chromosomal deletions in fliD (CVD 1901D) or flgK (CVD 1901K) were then engineered, resulting in the export of unpolymerized FliC, without impairing its overall expression. The virulence of the resulting isogenic strains was examined using a novel mouse LD50 model to accommodate the human-host restricted S. Paratyphi A. The immunogenicity of the attenuated strains was then tested using a mouse intranasal model, followed by intraperitoneal challenge with wildtype ATCC 9150.\nResults\nMucosal (intranasal) immunization of mice with strain CVD 1901 expressing cell-associated flagella conferred superior protection (vaccine efficacy [VE], 90%) against a lethal intraperitoneal challenge, compared with the flagellin monomer-exporting mutants CVD 1901K (30% VE) or CVD 1901D (47% VE). The superior protection induced by CVD 1901 with its cell-attached flagella was associated with an increased IgG2a:IgG1 ratio of FliC-specific antibodies with enhanced opsonophagocytic capacity.\nConclusions\nOur results clearly suggest that enhanced anti-FliC antibody-mediated clearance of S. Paratyphi A by phagocytic cells, induced by vaccines expressing cell-associated rather than exported FliC, might be contributing to the vaccine-induced protection from S. Paratyphi A challenge in vivo. We speculate that an excess of IgG1 anti-FliC antibodies induced by the exported FliC may compete with the IgG2a subtype and block binding to specific phagocyte Fc receptors that are critical for clearing an S. Paratyphi A infection....
Background\r\nHeat shock proteins (HSPs) are important candidates for the development of vaccines because they are usually able to promote both humoral and cellular immune responses in mammals. We identified and characterized the hsp60-hsp10 bicistronic operon of the animal pathogen Corynebacterium pseudotuberculosis, a Gram-positive bacterium of the class Actinobacteria, which causes caseous lymphadenitis (CLA) in small ruminants.\r\nFindings\r\nTo construct the DNA vaccine, the hsp60 gene of C. pseudotuberculosis was cloned in a mammalian expression vector. BALB/c mice were immunized by intramuscular injection with the recombinant plasmid (pVAX1/hsp60).\r\nConclusion\r\nThis vaccination induced significant anti-hsp60 IgG, IgG1 and IgG2a isotype production. However, immunization with this DNA vaccine did not confer protective immunity....
Background\r\nUpper and lower respiratory tract infections (RTIs) account for a substantial portion of outpatient antibiotic utilization. However, the pharmacodynamic activity of commonly used oral antibiotic regimens has not been studied against clinically relevant pathogens. The objective of this study was to assess the probability of achieving the requisite pharmacodynamic exposure for oral antibacterial regimens commonly prescribed for RTIs in adults against bacterial isolates frequently involved in these processes (S. pneumoniae, H. influenzae, and M. catharralis).\r\nMethods\r\nUsing a 5000-subject Monte Carlo simulation, the cumulative fractions of response (CFR), (i.e., probabilities of achieving requisite pharmacodynamic targets) for the most commonly prescribed oral antibiotic regimens, as determined by a structured survey of medical prescription patterns, were assessed against local respiratory bacterial isolates from adults in S�£o Paulo collected during the same time period. Minimal inhibitory concentration (MIC) of 230 isolates of Streptococcus pneumoniae (103), Haemophilus influenzae (98), and Moraxella catharralis (29) from a previous local surveillance were used.\r\n\r\nResults\r\nThe most commonly prescribed antibiotic regimens were azithromycin 500 mg QD, amoxicillin 500 mg TID, and levofloxacin 500 mg QD, accounting for 58% of the prescriptions. Varied doses of these agents, plus gatifloxacin, amoxicillin-clavulanate, moxifloxacin, and cefaclor made up the remaining regimens. Utilizing aggressive pharmacodynamic exposure targets, the only regimens to achieve greater than 90% CFR against all three pathogens were amoxicillin/amoxicillin-clavulanate 500 mg TID (> 91%), gatifloxacin 400 mg QD (100%), and moxifloxacin 400 mg QD (100%). Considering S. pneumoniae isolates alone, azithromycin 1000 mg QD also achieved greater than 90% CFR (91.3%).\r\nConclusions\r\nThe only regimens to achieve high CFR against all three pathogen populations in both scenarios were gatifloxacin 400 mg QD, moxifloxacin 400 mg QD, and amoxicillin-clavulanate 500 mg TID. These data suggest the need for reconsideration of empiric antibiotic regimen selection among adult patients with RTIs in the S�£o Paulo area. Additionally, this type of study could be used to optimize prescribing patterns in specific regions in light of emerging resistance....
Loading....